Temperature-Responsive Polymer Modified Surface for Cell Sheet Engineering
نویسندگان
چکیده
In the past two decades, as a novel approach for tissue engineering, cell sheet engineering has been proposed by our laboratory. Poly(N-isopropylacrylamide) (PIPAAm), which is a well-known temperature-responsive polymer, has been grafted on tissue culture polystyrene (TCPS) surfaces through an electron beam irradiated polymerization. At 37 °C, where the PIPAAm modified surface is hydrophobic, cells can adhere, spread on the surface and grow to confluence. By decreasing temperature to 20 °C, since the surface turns to hydrophilic, cells can detach themselves from the surface spontaneously and form an intact cell sheet with extracellular matrix. For obtaining a temperature-induced cell attachment and detachment, it is necessary to immobilize an ultra thin PIPAAm layer on the TCPS surfaces. This review focuses on the characteristics of PIAPAm modified surfaces exhibiting these intelligent properties. In addition, PIPAAm modified surfaces giving a rapid cell-sheet recovery has been further developed on the basis of the characteristic of the PIPAAm surface. The designs of temperature-responsive polymer layer have provided an enormous potential to fabricate clinically applicable regenerative medicine.
منابع مشابه
Surface modification of uniaxial cyclic strain cell culture platform with temperature-responsive polymer for cell sheet detachment.
Current cell sheet-based blood vessels lack biomimetic structure and require excessively long culture times that may compromise smooth muscle cell phenotype. We modified a commercially available product for uniaxial cell sheet conditioning with thermoresponsive copolymers. Thus, culture of detachable conditioned cell sheets is shortened while retaining structural integrity and contractility.
متن کاملRecent development of temperature-responsive surfaces and their application for cell sheet engineering.
Cell sheet engineering, which fabricates sheet-like tissues without biodegradable scaffolds, has been proposed as a novel approach for tissue engineering. Cells have been cultured and proliferate to confluence on a temperature-responsive cell culture surface at 37°C. By decreasing temperature to 20°C, an intact cell sheet can be harvested from the culture surface without enzymatic treatment. Th...
متن کاملTemperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering.
Temperature-responsive intelligent surfaces, prepared by the modification of an interface with poly(N-isopropylacrylamide) and its derivatives, have been used for biomedical applications. Such surfaces exhibit temperature-responsive hydrophilic/hydrophobic alterations with external temperature changes, which, in turn, result in thermally modulated interactions with biomolecules and cells. In th...
متن کاملFeMn2O4 nanoparticles coated dual responsive temperature and pH-responsive polymer as a magnetic nano-carrier for controlled delivery of letrozole anti-cancer
Objective(s): For cancer cells, an efficient and selective drug delivery vehicle can remarkably improve therapeutic approaches. This paper focuses on the synthesis and characterization of magnetic MnFe2O4 NPs and their incorporation in a dual temperature and pH-responsive polymer, which can serve as an efficient drug carrier. Materials and Methods: MnFe2O4 NPs were synthesized by chemical co-pr...
متن کاملA noninvasive transfer system for polarized renal tubule epithelial cell sheets using temperature-responsive culture dishes.
We used temperature-responsive culture dishes onto which the temperature-responsive polymer, poly(Nisopropylacrylamide), was covalently grafted for tissue engineering. Confluent cells harvested as intact sheets from these surfaces by simple temperature reduction can be transferred to various surfaces including additional culture dishes, other cell sheets, and tissues. In order to examine the ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012